8,790 research outputs found

    Longevity of supersymmetric flat directions

    Get PDF
    We examine the fate of supersymmetric flat directions. We argue that the non-perturbative decay of the flat direction via preheating is an unlikely event. In order to address this issue, first we identify the physical degrees of freedom and their masses in presence of a large flat direction VEV (Vacuum Expectation Value). We explicitly show that the (complex) flat direction and its fermionic partner are the only light {\it physical} fields in the spectrum. If the flat direction VEV is much larger than the weak scale, and it has a rotational motion, there will be no resonant particle production at all. The case of multiple flat directions is more involved. We illustrate that in many cases of physical interest, the situation becomes effectively the same as that of a single flat direction, or collection of independent single directions. In such cases preheating is not relevant. In an absence of a fast non-perturbative decay, the flat direction survives long enough to affect thermalization in supersymmetric models as described in hep-ph/0505050 and hep-ph/0512227. It can also ``terminate'' an early stage of non-perturbative inflaton decay as discussed in hep-ph/0603244.Comment: 9 revtex pages, v3: expanded discussion on two flat directions, minor modifications, conclusions unchange

    MSSM inflaton: SUSY dark matter and LHC

    Full text link
    In this talk we will discuss how inflation can be embedded within a minimal extension of the Standard Model where the inflaton carries the Standard Model charges. There is no need of an ad-hoc scalar field to be introduced in order to explain the temperature anisotropy of the cosmic microwave background radiation, all the ingredients are present within a minimal supersymmetric Standard Model. For the first time inflaton properties can be directly linked to the particle phenomenology, dark matter, and the baryons of the Standard Model.Comment: 6 Pages, UCLA DM 200

    Electron Correlations and Two-Photon States in Polycyclic Aromatic Hydrocarbon Molecules: A Peculiar Role of Geometry

    Full text link
    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene and circumcoronene, all possessing D6hD_{6h} point group symmetry versus ovalene with D2hD_{2h} symmetry, within the Pariser-Parr-Pople model of interacting π\pi-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D6hD_{6h} group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D2hD_{2h} ovalene but not in those with D6hD_{6h} symmetry.Comment: 11 pages, 3 figures, 3 table

    Cross-Sender Bit-Mixing Coding

    Full text link
    Scheduling to avoid packet collisions is a long-standing challenge in networking, and has become even trickier in wireless networks with multiple senders and multiple receivers. In fact, researchers have proved that even {\em perfect} scheduling can only achieve R=O(1lnN)\mathbf{R} = O(\frac{1}{\ln N}). Here NN is the number of nodes in the network, and R\mathbf{R} is the {\em medium utilization rate}. Ideally, one would hope to achieve R=Θ(1)\mathbf{R} = \Theta(1), while avoiding all the complexities in scheduling. To this end, this paper proposes {\em cross-sender bit-mixing coding} ({\em BMC}), which does not rely on scheduling. Instead, users transmit simultaneously on suitably-chosen slots, and the amount of overlap in different user's slots is controlled via coding. We prove that in all possible network topologies, using BMC enables us to achieve R=Θ(1)\mathbf{R}=\Theta(1). We also prove that the space and time complexities of BMC encoding/decoding are all low-order polynomials.Comment: Published in the International Conference on Information Processing in Sensor Networks (IPSN), 201

    Randomized Assignment of Jobs to Servers in Heterogeneous Clusters of Shared Servers for Low Delay

    Get PDF
    We consider the job assignment problem in a multi-server system consisting of NN parallel processor sharing servers, categorized into MM (N\ll N) different types according to their processing capacity or speed. Jobs of random sizes arrive at the system according to a Poisson process with rate NλN \lambda. Upon each arrival, a small number of servers from each type is sampled uniformly at random. The job is then assigned to one of the sampled servers based on a selection rule. We propose two schemes, each corresponding to a specific selection rule that aims at reducing the mean sojourn time of jobs in the system. We first show that both methods achieve the maximal stability region. We then analyze the system operating under the proposed schemes as NN \to \infty which corresponds to the mean field. Our results show that asymptotic independence among servers holds even when MM is finite and exchangeability holds only within servers of the same type. We further establish the existence and uniqueness of stationary solution of the mean field and show that the tail distribution of server occupancy decays doubly exponentially for each server type. When the estimates of arrival rates are not available, the proposed schemes offer simpler alternatives to achieving lower mean sojourn time of jobs, as shown by our numerical studies

    On the Spread of Random Interleaver

    Full text link
    For a given blocklength we determine the number of interleavers which have spread equal to two. Using this, we find out the probability that a randomly chosen interleaver has spread two. We show that as blocklength increases, this probability increases but very quickly converges to the value 1e20.86471-e^{-2} \approx 0.8647. Subsequently, we determine a lower bound on the probability of an interleaver having spread at least ss. We show that this lower bound converges to the value e2(s2)2e^{-2(s-2)^{2}}, as the blocklength increases.Comment: 5 pages, published in Proceedings of IEEE International Symposium on Information Theory 2005, Adelaide, Australi
    corecore